14

Bioremediation for Sustainable Environmental Cleanup

Carberry, J. B. and J. Wik. 2001. Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated

by petroleum. J. Environ. Sci. Health, Part A. 36(8): 1491–1503.

Çelik, Ö. and E. Y. Akdaş. 2019. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive

miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicol. Environ.

Saf. 170: 682–690.

Cerniglia, C. E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30: 31–71.

Cerniglia, C. E. and J. B. Sutherland. 2010. Degradation of polycyclic aromatic hydrocarbons by fungi. In Handbook

of Hydrocarbon and Lipid Microbiology.

Chang, F. C., C. H. Ko, M. J. Tsai, Y. N. Wang and C. Y. Chung. 2014. Phytoremediation of heavy metal contaminated

soil by Jatropha curcas. Ecotoxicol. 23: 1969–1978.

Chaussonnerie, S., P. L. Saaidi, E. Ugarte, A. Barbance, A. Fossey, V. Barbe, G. Gyapay, T. Bruls, M. Chevallier,

L. Couturat, S. Fouteau, D. Muselet, E. Pateau, G. N. Cohen, N. Fonknechten, J. Weissenbach and D. Le

Paslier. 2016. Microbial degradation of a recalcitrant pesticide: chlordecone. Front. Microbial. 7: 2025.

Cherian, S. and M. M. Oliveira. 2005. Transgenic plants in phytoremediation: recent advances and new

possibilities. Environ. Sci. Technol. 39(24): 9377–9390.

Chen, B. Y., C. M. Ma, K. Han, P. L. Yueh, L. J. Qin and C. C. Hsueh. 2016. Influence of textile dye and decolorized

metabolites on microbial fuel cell-assisted bioremediation. Bioresour. Technol. 200: 1033–1038.

Chen, S., Q. Hu, M. Hu, J. Luo, Q. Weng and K. Lai. 2011. Isolation and characterization of a fungus able to degrade

pyrethroids and 3-phenoxybenzaldehyde. Bioresour. Technol. 102(17): 8110–8116.

Cho-Ruk, K., J. Kurukote, P. Supprung and S. Vetayasuporn. 2006. Perennial plants in the phytoremediation of lead

contaminated soils. Biotechnol. 5: 1–4.

Colberg, P. J. S. and L. Y. Young. 1995. Anaerobic degradation of nonhalogenated homocyclic aromatic compounds

coupled with nitrate, iron, or sulfate reduction. Microbial Transformation and Degradation of Toxic Organic

Chemicals. 307330.

Cooney, J. J., S. A. Silver and E. A. Beck. 1985. Factors influencing hydrocarbon degradation in three freshwater

lakes. Microb. Ecol. 11(2): 127–137.

Daneshvar, N., M. Ayazloo, A. R. Khataee and M. Pourhassan. 2007. Biological decolorization of dye solution

containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol. 98(6): 1176–1182.

Dellagnezze, B. M., S. P. Vasconcellos, A. L. Angelim, V. M. M. Melo, S. Santisi, S. Cappello and V. M. Oliveira.

2016. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil

degradation in mesocosm scale. Mar. Pollut. Bull. 107(1): 107–117.

Dellamatrice, P. M., M. E. Silva-Stenico, L. A. B. D. Moraes, M. F. Fiore and R. T. R. Monteiro. 2017. Degradation

of textile dyes by cyanobacteria. Braz. J. Microbiol. 48: 25–31.

Dercova, K., K. Laszlova, H. Dudášová, S. Murinova, M. Balaščáková and J. Škarba. 2015. The hierarchy in selection

of bioremediation techniques: the potentials of utilizing bacterial degraders. Chemické Listy 109: 279–288.

Dua, M., A. Singh, N. Sethunathan and A. Johri. 2002. Biotechnology and bioremediation: successes and

limitations. Appl. Microbiol. Biotechnol. 59(2): 143–152.

de Lima Souza, H. M., L. D. Sette, A. J. Da Mota, J. F. do Nascimento Neto, A. Rodrigues, T. B. de Oliveira, L. A. de

Oliveira, H. D. Santos Barroso and S. P. Zanott. 2016. Filamentous fungi isolates of contaminated sediment in

the Amazon region with the potential for benzo (a) pyrene degradation. Water Air Soil Pollut. 227(12): 1–13.

Eid, E. M., T. M. Galal, N. A. Sewelam, N. I. Talha, S. M. and Abdallah. 2020. Phytoremediation of heavy metals by four

aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ

Sci. Pollut. Res. 27: 12138–12151.

EPA. 1998. A Citizen’s Guide to Phytoremediation. EPA 542-F-98-011. U.S. Environmental Protection Agency,

Washington.

EPA. 2000. A citizen guide to phytoremediation. EPA 542-F-98-011. United States Environmental Protection Agency,

p.6. Available http//www.bugsatwork.com/XYCLONYX/EPA_GUIDES/PHYTO.PDF.

EPA. 2016. United States Environmental Protection Agency. https://www3.epa.gov/ (Accessed May 2016).

Eslami, N., A. Takdastan and F. Atabi. 2022. Biological Remediation of Polychlorinated Biphenyl (PCB)-Contaminated

soil using the vermicomposting technology for the management of sewage sludge containing Eisenia fetida

earthworms. Soil Sediment Contamin. An International Journal, 1–17.

Esparza-Naranjo, S. B., G. F. da Silva, D. C. Duque-Castaño, W. L. Araújo, C. K. Peres, M. Boroski and R. C.

Bonugli-Santos. 2021. Potential for the biodegradation of atrazine using leaf litter fungi from a subtropical

protection area. Curr. Microbiol. 78(1): 358–368.

Gangola, S., G. Negi, A. Srivastava and A. Sharma. 2015. Enhanced biodegradation of endosulfan by Aspergillus

and Trichoderma spp. isolated from an agricultural field of tarai region of Uttarakhand. Pestic. Res. J. 27(2):

223–230.

Gangola, S., A. Sharma, P. Bhatt, P. Khati and P. Chaudhary. 2018. Presence of esterase and laccase in Bacillus subtilis

facilitates biodegradation and detoxification of cypermethrin. Sci. Rep. 8(1): 1–11.